
BioPAX – Biological Pathways Exchange Language

Level 1, Version 1.4 Documentation

BioPAX Recommendation Wednesday, April 27, 2005

The BioPAX data exchange format is the joint work of the BioPAX workgroup: Gary D. Bader,
Erik Brauner, Michael P. Cary, Robert Goldberg, Chris Hogue, Peter Karp, Teri Klein, Joanne
Luciano, Debbie Marks, Natalia Maltsev, Elizabeth Marland, Eric Neumann, Suzanne Paley,
John Pick, Aviv Regev, Andrey Rzhetsky, Chris Sander, Vincent Schachter, Imran Shah, Jeremy
Zucker.

Copyright © 2005 BioPAX Workgroup. All Rights Reserved

Abstract
At present, there are over 170 Internet-accessible databases that store biological pathway data.
Each has its own representation conventions and data access methods. This can create problems
for researchers that wish to make use of the data regardless of where and how it is stored.

BioPAX (Biological Pathway Exchange - http://www.biopax.org) enables the integration of
these resources by defining an open file format specification for the exchange of biological
pathway data. By utilizing the BioPAX format, the problem of data integration reduces to a
semantic mapping between the data models of each resource and the data model defined by
BioPAX. Widespread adoption of BioPAX for data exchange will increase access to and
uniformity of pathway data from varied sources, thus increasing the efficiency of computational
pathway research. This document describes the Level 1, version 1.4 release of the BioPAX
ontology and the BioPAX format.

Scope of this document
This BioPAX documentation is targeted at bioinformaticians with an interest in biological
pathway data. Those who are only interested in an overview of BioPAX are encouraged to read
the introduction (section 1). It is expected that readers are familiar with one or more pathway
databases and have a basic understanding of both bioinformatics and molecular and cellular
biology. This background information is available in a number of textbooks1,2.

This document provides an overview of the BioPAX Level 1, Version 1.4 ontology. This
includes descriptions of the BioPAX ontology classes, sample use cases and best practice
recommendations. This document does not provide a full definition of the BioPAX ontology,
which is given by the BioPAX Level 1, Version 1.4 OWL file, located here:

http://www.biopax.org/Downloads/Level1v1.4/biopax-level1.owl

Ontology changes since Level 1, version 1.2
Previous version of ontology:
http://www.biopax.org/Downloads/Level1v1.2/biopax-level1.owl

The changes described below were made to biopax-level1.owl since the version 1.2 release. The
latest version of the BioPAX Level 1 version 1.x OWL file can always be found here:
http://www.biopax.org/release/biopax-level1.owl

DIRECTION slot is now optional
The DIRECTION slot has been made optional. In previous versions of BioPAX, the
DIRECTION slot was a non-optional property of the catalysis class. In some cases, however, it
is known that an enzyme catalyzes a reaction but it is not known whether the catalysis is
bidirectional or if it favors one direction over the other.

New slot: ID-VERSION
The ID-VERSION slot has been added to the xref class (and therefore also to its children:
publicationXref, relationshipXref, and unificationXref). A number of biological databases track
changes to database entries with ID version numbers. Since updates to database entries may alter
the validity of assertions made in pathway data, such as the participation of an entity in an
interaction, it is important to keep track of the ID version for which these assertions were made.

Key definitions
BioPAX workgroup: The group of volunteers designing the BioPAX ontology and format.

BioPAX ontology: The abstract representation of biological pathway concepts and their
relationships developed by the BioPAX workgroup. This is also called the object model.

BioPAX format: The file format implementation of the BioPAX ontology that defines the
syntax of representation for data. The BioPAX format is currently implemented only in OWL,
but other implementations, such as XML Schema may be developed in the future.

OWL: Web Ontology Language. OWL can be used to both define an ontology and to store
instance data that adheres to that ontology. The ontology definition can be used to validate a set
of instances. An ontology may be defined within an instance data document or may be imported
from an external OWL document. OWL is an XML-based language defined by the World Wide
Web Consortium. See http://www.w3.org/TR/owl-guide/

Status of this document
This document has been reviewed by BioPAX workgroup members and interested third parties.
Comments on this specification may be sent to biopax-discuss@biopax.org; archives of the
comments are available by subscribing to our mailing list here:
http://www.biopax.org/mailman/private/biopax-discuss/.

This document and the BioPAX Level 1 OWL file will be updated over time, based on
community input. The documentation for the latest version of BioPAX Level 1 version 1.x can
always be found here:
http://www.biopax.org/release/biopax-level1-documentation.pdf

Document changes since the previous version
Previous version of this document:
http://www.biopax.org/Downloads/Level1v1.2/biopax-level1-documentation.pdf

• No sections of this document have been added or removed since the previous version.

Related documents
BioPAX Level 1, Version 1.4 OWL file:
http://www.biopax.org/Downloads/Level1v1.4/biopax-level1.owl

BioPAX Namespace
The following URI is defined to be BioPAX Level 1, version 1.x namespace:

http://www.biopax.org/release/biopax-level1.owl#

This namespace name (URI) will always be used to refer to the most recently released 1.x
version of BioPAX; different URIs will be used for any and all other major versions of BioPAX
Level 1 (e.g. versions 2.x, 3.x, etc.) See Appendix B for an explanation of BioPAX level and
version numbers.

Table of contents
BioPAX – Biological Pathways Exchange Language ________________________________ 1

Level 1, Version 1.4 Documentation __ 1
Abstract ___ 1
Scope of this document___ 1
Ontology changes since Level 1, version 1.2__ 2

DIRECTION slot is now optional__2
New slot: ID-VERSION ___2

Key definitions ___ 2
Status of this document __ 2

Document changes since the previous version __3
Related documents __ 3
BioPAX Namespace ___ 3
Table of contents__ 4
How to Participate __ 6

2 BioPAX Ontology Class Structure __ 8
Top level classes __ 8

Entity (Root class of ontology) __9
Second level classes__ 9

Pathway__9
Interaction ___10
PhysicalEntity __11

Interaction sub-classes __ 11
Control ___11
Conversion __12

Control sub-classes ___ 13
Catalysis __13
Modulation __14

Conversion sub-classes __ 14
Biochemical Reaction __14
Complex Assembly__15
Transport__16

Summary of Interaction Class Structure ___ 17
PhysicalEntity leaf classes ___ 18

RNA ___18
Protein__18
Small Molecule ___19
Complex __19

Utility classes__ 20
BioSource ___20
ChemicalStructure___21

DataSource __21
OpenControlledVocabulary ___21
PathwayStep ___22
PhysicalEntityParticipant ___22
Xref __22
PublicationXref ___23
RelationsipXref ___23
UnificationXref ___24

Summary of BioPAX Class Structure__ 24
3 Examples ___ 25

4 Best Practices ___ 26
General Best Practices __ 26

Internal Identifiers___26
External References ___28
Other recommendations __30

Best Practices: Metabolic Pathways ___ 30
PARTICIPANTS slot __30
LEFT and RIGHT slots___30
Control ___31
Catalysis __31
Conversion __31
Pathway___31

5 HOW-TO ___ 33
Creating a knowledge-base using BioPAX and Protégé _________________________________ 33
Viewing Instances Graphically ___ 34

6 Use Case Outlines __ 35
Data Sharing Between Databases ___ 35
BioPAX as a knowledge-base (KB) Model __ 36
Pathway Data Warehouse ___ 36
Pathway Analysis Software __ 36

Pathway Analysis Software Example: Molecular profiling analysis ________________________________36
Visualizing Pathway Diagrams ___ 37
Pathway Modeling ___ 37

Using BioPAX as metadata for SBML and CellML___37
Pathway analysis using logical inference ___37

7 Glossary __ 39

Appendix A: Design Principles ___ 40

Appendix B: Level and Version Numbers___ 41

Acknowledgements___ 41

References ___ 42

1 Introduction

BioPAX (Biological Pathway Exchange) aims to facilitate the integration and exchange of data
maintained in biological pathway databases. Traditionally, integrating data from a number of
databases, diverse in form and content, has been a challenge in the field of Bioinformatics3. One
solution is to define a mutually agreed upon file format as a standard way of representing a given
type of data in a community. An example of such a standard is the DDBJ/EMBL/GenBank flat-
file format, used to represent nucleic acid sequence data.

Currently, there is no file format standard broadly applicable to biological pathway data, despite
the presence of this data in over 100 different internet accessible databases*. While previous
work has been done to standardize specific types of pathway data, notably, the protein-protein
interaction database community has developed a format called PSI-MI4, there is no format
capable of representing all of the most frequently used types of pathway data. The goal of the
BioPAX project is to provide a data exchange format for pathway data that will represent
the key elements of the data models from a wide range of popular pathway databases. To
achieve this goal, the BioPAX ontology was designed to support the data models of a number of
existing pathway databases, such as BioCyc5,6, BIND7, WIT8, PATIKA9, Reactome, aMAZE10,
KEGG11 and others. When designing the BioPAX ontology for Level 1, the BioPAX workgroup
endeavored to balance the many different representational needs of these and other biological
pathway databases by adhering to design principles that promote interoperability. These design
principles include flexibility, extensibility, optional encapsulation of frequently used external
data, compatibility with other standards and computability (see Appendix 1: Design Principles).

Because pathway data are complex and can be represented at many levels of detail, the BioPAX
group is using a leveled development approach, similar to that of SBML12. While the overall
framework of the BioPAX ontology, i.e. the root class structure, has been designed with the
entire pathway data space in mind, representation of specific types of pathway data are the focus
of individual levels. BioPAX Level 1 is designed to represent metabolic pathway data.
Representing other types of pathway data with BioPAX Level 1 is possible but may not be
optimal. Future levels will enhance coverage for additional types of pathway data, such as signal
transduction pathways and molecular interaction networks; see the BioPAX Roadmap, located
here:

http://www.biopax.org/Docs/BioPAX_Roadmap.html

How to Participate

Since a data exchange format is only useful if it is widely adopted, the BioPAX project aims to
promote the use of the format by as many data sources as possible. This is achieved partly
through community outreach at conferences and workshops, and partly through active
participation in the project by data providers and consumers.

* http://www.cbio.mskcc.org/prl

There are many ways to participate in BioPAX development: once can participate directly in its
design, provide feedback to the BioPAX group, provide data in the BioPAX format, develop
software tools that support the BioPAX format, provide sponsorship for BioPAX activities, and
encourage participation by others.

BioPAX participation is currently on a volunteer basis and members have typically paid their
own expenses. The US Department of Energy (DOE) has provided some funding for holding
meetings and will support additional meetings in the future.

More details are available on the www.biopax.org web page.

2 BioPAX Ontology Class Structure

This section provides an overview of the BioPAX class structure. Full definitions are found in
the BioPAX OWL document (http://www.biopax.org/release/biopax-level1.owl). Text
definitions of classes are provided along with synonyms, comments and examples, where
possible, to help the reader understand the definition and intended use of each class.

Additionally, classes are shown graphically using ezOWL (see HOW-TO section below).
Classes are shown as boxes, with the name of the class in a pale yellow box and the slots of the
class in white boxes below the class name. A white O denotes an inherited slot and an orange O
denotes a slot defined in this class.

Interspersed throughout this section are diagrams generated by GKB Editor showing a subset of
the BioPAX class hierarchy as an overview or summary of the classes discussed in a subsection.
Bold class names indicate that the class has children that are not currently displayed.

Top level classes
The BioPAX ontology defines 4 basic concepts in the ontology: the root level entity class and
three subclasses: pathway, interaction and physicalEntity.

Table 1: Analogies of the root BioPAX ontology structure (first and second level classes) to

other conceptual areas.
 Linguistic Graph representation Pathway shorthand
Entity Noun (Subject

or Object)
Node A, B, C

Relationship Verb Edge ,
Interaction Phrase/Sentence Either a node set by itself

(member of a set relationship)
or a node set connected to

another node set by an edge
(relationship between sets)

A B, B C

Pathway Paragraph Graph A B C

Entity (Root class of ontology)
Definition: Any concept referred to as a discrete biological unit when describing pathways. This
is the root class for all biological concepts in the ontology, which include pathways, interactions
and physical entities. As the most abstract class in the ontology, instances of the entity class
should be created rarely, if ever.
Synonyms: thing, object, bioentity.

Second level classes

Pathway
Definition: An entity that consists of a set of interactions. A pathway is a series of molecular
interactions and reactions, often forming a network, which biologists have found useful to group
together for organizational, historic, biophysical or other reasons.
Synonyms: network
Comment: It is possible to define a pathway without specifying the interactions within the
pathway. In this case, the pathway instance could consist simply of a name and could be treated
as a black box. Currently this class is not subclassed, but could conceivably be subclassed in
different ways into various subtypes of pathways, such as “metabolic pathway”, “signal

transduction pathway”, “gene regulatory network” or “physiological process”, “cellular process”
as is done in the Gene Ontology13 “biological process” ontology. In fact, the entire GO biological
process ontology could be included under the pathway class.
Examples: glycolysis, valine biosynthesis

Interaction
Definition: An entity that defines a single biochemical interaction between two or more entities.
An interaction cannot be defined without the entities it relates. Since it is a highly abstract class
in the ontology, instances of the interaction class should be created rarely.

Comment: Currently this class only has subclasses that define biochemical interactions; later
levels of BioPAX may define other types of interactions.
Naming rationale: A number of names were considered for this concept, including “process”,
“synthesis” and “relationship”; Interaction was chosen as it is understood by biologists in a
biological context and is compatible with PSI-MI.
Examples: protein-protein interaction, biochemical reaction, enzyme catalysis

PhysicalEntity
Definition: An entity that has a physical structure. This class serves as the super-class for all
physical entities, although its current set of subclasses is limited to molecules. Physical entities
are frequent building blocks of interactions. As a highly abstract class in the ontology, instances
of the physicalEntity class should be created rarely, if ever.
Synonyms: part, interactor, object
Comment: This may be expanded to include DNA, photon, environment, cell and cellular
component in later levels of BioPAX, depending on community need.
Naming rationale: It’s difficult to find a name that encompasses all of the subclasses of this
class without being too general. E.g. PSI-MI uses ‘interactor’, BIND uses ‘object’, BioCyc uses
‘chemicals’. physicalEntity seems to be a good specialization of entity.
Examples: protein, small molecule, RNA,

Interaction sub-classes
Two terms exist under interaction: Control and conversion. In future BioPAX levels, this list
may be extended to include other classes, such as genetic interactions (see the BioPAX
Roadmap).

Control
Definition: An interaction in which one entity regulates, modifies, or otherwise influences
another. Two types of control interactions are defined: activation and inhibition. Since this class
is a superclass for specific types of control, instances of the control class should only be
generated when none of its subclasses are applicable.
Synonyms: regulation, mediation

Examples: Enzyme catalysis controls a biochemical reaction, transport catalysis controls
transport, a small molecule that inhibits a pathway by an unknown mechanism controls the
pathway.

Conversion
Definition: An interaction in which one or more entities is physically transformed into one or
more other entities. This class is designed to represent a simple, single-step transformation.
Multi-step transformations, such as the conversion of glucose to pyruvate in the glycolysis
pathway, should be represented as pathways, if known. Since it is a highly abstract class in the
ontology, instances of the conversion class should be created rarely, if ever.
Examples: A biochemical reaction converts substrates to products, the process of complex
assembly converts single molecules to a complex, transport converts entities in one compartment
to the same entities in another compartment.

Control sub-classes
Two types of control processes exist under the control class: catalysis and modulation.

Catalysis
Definition: A control interaction in which a physical entity (a catalyst) increases the rate of a
conversion interaction by lowering its activation energy. Instances of this class describe a pairing
between a catalyzing entity and a catalyzed conversion. A separate catalysis instance should be
created for each different conversion that a physicalEntity may catalyze and for each different
physicalEntity that may catalyze a conversion. For example, a bifunctional enzyme that catalyzes
two different biochemical reactions would be linked to each of those biochemical reactions by
two separate instances of the catalysis class.

Typically, each step in a metabolic pathway is either an instance of the catalysis class or a
spontaneous conversion, which occurs under biological conditions without the aid of a catalyzing
entity.
Synonyms: facilitation, acceleration.
Examples: The catalysis of a biochemical reaction by an enzyme, the enabling of a transport
interaction by a membrane pore complex, and the facilitation of a complex assembly by a
scaffold protein. Hexokinase -> (The “Glucose + ATP -> Glucose-6-phosphate +ADP” reaction).
A plasma membrane Na+/K+ ATPase is an active transporter (antiport pump) using the energy
of ATP to pump Na+ out of the cell and K+ in. Na+ from cytoplasm to extracellular space would
be described in a transport instance. K+ from extracellular space to cytoplasm would be
described in a transport instance. The ATPase pump would be stored in a catalysis instance
controlling each of the above transport instances.

Modulation
Definition: A control interaction in which a physical entity modulates a catalysis interaction.
Biologically, most modulation interactions describe an interaction in which a small molecule
alters the ability of an enzyme to catalyze a specific reaction. Instances of this class describe a
pairing between a modulating entity and a catalysis interaction. A separate modulation instance
should be created for each different catalysis that a physical entity may modulate and for each
different physical entity that may modulate a catalysis instance. A typical modulation instance
has a small molecule as the controller entity and a catalysis instance as the controlled entity.
Examples: Allosteric activation and competitive inhibition of an enzyme’s ability to catalyze a
specific reaction.

Conversion sub-classes
Four types of conversion processes exist under the conversion class: biochemical reaction,
complex assembly, transport and transportWithBiochemicalReaction.

Biochemical Reaction
Definition: A conversion interaction in which one or more entities (substrates) undergo covalent
changes to become one or more other entities (products). The substrates of biochemical reactions
are defined in terms of sums of species. This is convention in biochemistry, and, in principle, all
of the EC reactions should be biochemical reactions.
Examples: ATP + H2O = ADP + Pi

Comment: In this example reaction, ATP is considered to be an equilibrium mixture of several
species, namely ATP4-, HATP3-, H2ATP2-, MgATP2-, MgHATP-, and Mg2ATP. Additional
species may also need to be considered if other ions (e.g. Ca2+) that bind ATP are present.
Similar considerations apply to ADP and to inorganic phosphate (Pi). When writing biochemical
reactions, it is important not to attach charges to the biochemical reactants and not to include
ions such as H+ and Mg2+ in the equation. The reaction is written in the direction specified by
the EC nomenclature system, if applicable, regardless of the physiological direction(s) in which
the reaction proceeds.

Polymerization reactions involving large polymers whose structure is not explicitly captured
should generally be represented as unbalanced reactions in which the monomer is consumed but
the polymer remains unchanged, e.g. glycogen + glucose = glycogen.

Complex Assembly
Definition: A conversion interaction in which a set of physical entities, at least one being a
macromolecule (protein or RNA), aggregate via non-covalent interactions. One of the
participants of a complexAssembly must be an instance of the class complex.
Synonyms: aggregation, complexFormation
Comment: This class is also used to represent complex disassembly. The direction in which the
complexAssembly occurs (toward either assembly or disassembly) is specified via either the
SPONTANEOUS slot or the DIRECTION slot (in the catalysis class), depending on whether the
interaction occurs spontaneously or must be catalyzed in order to occur.
Examples: Assembly of the TFB2 and TFB3 proteins into the TFIIH complex, and assembly of
the ribosome through aggregation of its subunits.

The following are not examples of complex assembly: Covalent phosphorylation of a protein
(this is a biochemicalReaction), the TFIIH complex itself (this is an instance of the complex
class, not the complexAssembly class).

Transport
Definition: A conversion interaction in which an entity (or set of entities) changes location
within or with respect to the cell. A transport interaction does not include the transporter entity,
even if one is required in order for the transport to occur. Instead, transporters are linked to
transport interactions via the catalysis class.
Synonyms: translocation.
Comment: Transport interactions do not involve chemical changes of the participant(s). These
cases are handled by the transportWithBiochemicalReaction class.
Examples: The movement of Na+ into the cell through an open voltage-gated channel.

TransportWithBiochemicalReaction
Definition: A conversion interaction that is both a biochemicalReaction and a transport. In
transportWithBiochemicalReaction interactions, one or more of the substrates change both their
location and their physical structure.
Examples: In the PEP-dependent phosphotransferase system, transportation of sugar into an E.
coli cell is accompanied by the sugar’s phosphorylation as it crosses the plasma membrane. Also,
active transporters that use ATP as an energy source fall under this category, even if the only
covalent change is the hydrolysis of ATP to ADP.

Summary of Interaction Class Structure

PhysicalEntity leaf classes

RNA
Definition: A physical entity consisting of a sequence of ribonucleotide monophosphates; a
ribonucleic acid
Examples: messengerRNA, microRNA, ribosomalRNA. A specific example is the let-7
microRNA.

Protein
Definition: A physical entity consisting of a sequence of amino-acids; a protein monomer; a
single polypeptide chain.
Examples: The epidermal growth factor receptor (EGFR) protein.

Small Molecule
Definition: Any bioactive molecule that is not a peptide, protein, or RNA. Generally these are
non-polymeric, but complex carbohydrates and DNA are not explicitly modeled as classes in this
version of the ontology, thus are forced into this class.
Comment: There is a known lack of adequate small molecule databases to cross-reference from
this class.
Examples: glucose, penicillin

Complex
Definition: A physical entity whose structure is comprised of other physical entities bound to
each other non-covalently, at least one of which is a macromolecule (protein or RNA).
Complexes must be stable enough to function as a biological unit; in general, the temporary
association of an enzyme with its substrate(s) should not be considered or represented as a
complex. A complex is the physical product of an interaction (complexAssembly), thus is not an
interaction itself.
Comment: Complexes can be defined recursively to describe smaller complexes within larger
complexes, e.g., a participant in a complex can itself be a complex.

The boundaries on the size of complexes described by this class are not defined here,
although elements of the cell as large and dynamic as, e.g., a mitochondrion would typically not
be described using this class (later versions of this ontology may include a cellularComponent
class to represent these). The strength of binding of the components is also not described.
Examples: Ribosome, RNA polymerase II. Other examples of this class include complexes of
multiple protein monomers and complexes of proteins and small molecules.

Utility classes
A number of slots in the ontology accept instances of utility classes as values. In essence, these
utility classes provide a custom data type when a simple data type, such as a string or an integer,
is insufficient.

BioSource
Definition: A utility class that defines the biological source of a protein or RNA. Other entities
are either considered source-neutral (e.g. small molecules) or their biological source can be
deduced from their constituents.
Examples: human, mouse liver tissue, and HeLa cells.

ChemicalStructure
Definition: A utility class that defines a small molecule structure. An instance of this class can
also define additional information about a small molecule, such as its chemical formula, names,
and synonyms. This information is stored in the slot STRUCTURE-DATA, in one of two
formats: the CML format14 (see URL www.xml-cml.org) or the SMILES format15 (see URL
www.daylight.com/dayhtml/smiles/). The STRUCTURE-FORMAT slot specifies which format
used is used.
Examples: The following SMILES string, which describes the structure of glucose-6-phosphate:

‘C(OP(=O)(O)O)[CH]1([CH](O)[CH](O)[CH](O)[CH](O)O1)’.

DataSource
Definition: A description of the source of this data. Currently, this class only contains a free text
description, but may be made more structured in future levels.
Examples: A database or person name.

OpenControlledVocabulary
Definition: A utility class used to import terms from external controlled vocabularies (CVs) into
the ontology. To support consistency and compatibility, open, freely available CVs should be
used whenever possible, such as the Gene Ontology (GO)13. A repository for open biological
CVs has been created by the OBO project (http://obo.sourceforge.net/).

PathwayStep
Definition: A utility class that describes the order in which interactions occur in a pathway. The
interactions that take place at a pathway step are listed and an ordering relationship between
pathway steps by pointing to the next pathwayStep(s) in the pathway is given. For example, a
metabolic pathway may contain a pathway step composed of one biochemical reaction (BR1)
and one catalysis (CAT1) instance, where CAT1 describes the catalysis of BR1.

PhysicalEntityParticipant
Definition: A utility class that describes any additional special characteristics of a physical entity
required in order for it to participate in an interaction. In the current ontology, these include
stoichiometric coefficient and cellular location. For example, in the interaction describing the
transport of L-arginine into the cytoplasm in E. coli, the LEFT slot in the interaction would be
filled with an instance of physicalEntityParticipant that specified the location of L-arginine as
periplasm and the stoichiometric coefficient as one.

Xref
Definition: A utility class that defines a reference between an instance of a class in this ontology
to an object in an external resource.

PublicationXref
Definition: An xref that defines a reference to a publication such as a book, journal article, web
page, or software manual. The reference may or may not be in a database, although references to
PubMed are preferred when possible. The publication should make a direct reference to the
instance it is attached to.
Examples: PubMed:10234245

RelationsipXref
Definition: An xref that defines a reference to an entity in an external resource that does not
have the same biological identity as the referring entity.
Examples: A link between a gene G in a BioPAX data collection, and the protein product P of
that gene in an external database. This is not a unification xref because G and P are different
biological entities (one is a gene and one is a protein). Another example is a relationship xref for
a protein that refers to the Gene Ontology biological process, e.g. ‘immune response,’ that the
protein is involved in.

UnificationXref
Definition: A unification defines a reference to an entity in an external resource that has the
same biological identity as the referring entity16. For example, if one wished to link from a
database record, C, describing a chemical compound in a BioPAX data collection to a record, C’,
describing the same chemical compound in an external database, one would use a unification
xref since records C and C' describe the same biological identity. Generally, unification xrefs
should be used whenever possible, although there are cases where they might not be useful, such
as application to application data exchange.
Comment: Unification xrefs in physical entities are essential for data integration, but are less
important in interactions. This is because unification xrefs on the physical entities in an
interaction can be used to compute the equivalence of two interactions of the same type.

An xref in a protein pointing to a gene, e.g. in the LocusLink database17, would not be a
unification xref since the two entities do not have the same biological identity (one is a protein,
the other is a gene). Instead, this link should be a captured as a relationship xref16.
Examples: An xref in a protein instance pointing to an entry in the Swiss-Prot database, and an
xref in an RNA instance pointing to the corresponding RNA sequence in the RefSeq database.

Summary of BioPAX Class Structure

3 Examples

A number of examples of pathways in the BioPAX format are available for download here:

http://cvs.sourceforge.net/viewcvs.py/biopax/biopax/examples/

As new examples are developed, they will be posted on this site.

4 Best Practices

While the BioPAX ontology is very structured and imposes logical constraints so that data
encoded make sense for the use cases envisioned, a few parts of the ontology have the potential
for encoding data in multiple ways. This section recommends best practices in the use of the
ontology for data exchange between groups. It is expected that major data providers follow these
recommendations to ensure compatibility of their data with other BioPAX data.

Users of BioPAX who are not exchanging data between groups, e.g. using BioPAX as an
internal data model for their software, might find alternate representations to the ones
recommended here more useful for their purposes.

General Best Practices
General best practices relate to all uses of BioPAX.

Internal Identifiers
Internal identifiers (IDs) relate elements within a BioPAX document to each other. For example,
if a number of proteins are defined, a protein complex can be constructed by simply pointing to
the existing proteins using their unique internal IDs. Internal identifiers are expected to be unique
within a single document. This is a major feature of OWL documents - instances are defined
once and simply pointed to as necessary.

RDF ID
In an OWL document, such as BioPAX, each instance of a class will have an RDF ID. This
comes from the Resource Descriptor Framework standard (http://www.w3.org/RDF/). These IDs
must be unique and are used to reference class instances within a document. An RDF ID exists
within a namespace, which can be explicitly appended before the RDF ID. If not explicit, the
RDF ID exists in the default namespace of the document. Like anchors in HTML, a pointer to an
RDF ID defined elsewhere in the document is denoted with a hash mark (“#”) in front of the
RDF ID.

Example

<protein rdf:ID="protein76">

<XREF rdf:resource="#xref1146"/>
</protein>

It is recommended that RDF IDs do not encode any semantics and should be either unique
(within the file) positive integers (encoded as strings) or should be composed of the class name
followed by a unique positive integer (e.g. “protein76”). Some applications that use OWL, such
as Protégé and some examples of OWL from the main OWL website, use human readable names
for the RDF IDs. As long as these names are unique, a BioPAX document will be valid, but the

use of human readable names as RDF IDs might encourage people to rely on information stored
in them and is thus not recommended, since RDF IDs may not persist after certain data
processing operations, such as integrating data from two separate BioPAX files.

Please note that in the Protégé tool, the RDF ID of an instance is referred to as its Name. This
should not be confused with the BioPAX NAME (all letters capitalized) slot, which is meant to
provide the human readable name for biological entities (Figure 1). Protégé can be configured to
display the value of the NAME slot (or another field value) instead of the RDF ID. Use the
Display Slot pull-down menu in the Individuals tab to select the slot to display.

Figure 1: The difference between name and RDF ID shown in Protégé.

Document namespace
OWL XML documents require a default namespace. The creator of the BioPAX document
should create a namespace and encode it in the BioPAX document. The namespace and the RDF
ID may be used together to reference instances in a document from an external document
(explicit use of namespace). This reference mechanism is part of the basis of the planned
Semantic Web (http://www.w3.org/2001/sw/). If a BioPAX document is going to be on the
Semantic Web, it should have a unique namespace. Since there is no namespace naming
authority, it is not possible to guarantee unique namespaces across the internet, but following
these recommendations will reduce the chances of naming collisions.

Technically, any string without spaces is allowed (see namespace rules) as a namespace.
Operationally, a URL (or more generally a URI) should be used. This does not have to be a ‘real’
URL that resolves to a web page, but it should be related to the organization of the creator and a
registered domain name owned by the organization is useful to include e.g.
“http://ecocyc.org/ontology/biopax/#”.

RDF ID

RDF ID

BioPAX
NAME slot

Use of the xmlns and xml:base attributes to specify the namespace for any BioPAX documents
created is recommended. The BioPAX ontology definition should be imported and the BioPAX
namespace should be defined using the ‘bp’ string e.g.
xmlns:bp=http://www.biopax.org/release/biopax-level1.owl, so that XML elements in the file
appear like this <bp:pathway></bp:pathway>.

A typical header of an OWL XML document that uses the BioPAX ontology will look like this:

<?xml version="1.0"?>
<rdf:RDF
 xmlns=" http://www.myorganization.org/ontology#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xs=http://www.w3.org/2001/XMLSchema#
 xmlns:bp="http://www.biopax.org/release/biopax-level1.owl#"
 xml:base="http://www.myorganization.org/ontology#"
>
<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.biopax.org/release/biopax-level1.owl"/>
</owl:Ontology>

Where http://www.myorganization.org/ontology# defines the namespace for this document.

OWL XML documents that mix BioPAX definitions with those from other ontologies or extend
BioPAX will have different ways of using namespaces, but those are not dealt with here.
Extensions to the BioPAX ontology are not expected to be compatible with tools written
specifically to support the BioPAX ontology.

External References
External references (Xrefs) relate elements within a BioPAX document to external data. Xrefs
are more than just identifiers, as they contain the name of the data source the identifiers are part
of. Xrefs are NOT related to RDF IDs. They exist to uniquely point to a record in an external
data source (e.g. a database). Examples are pointers from a protein instance in BioPAX to a
record in a database describing the protein. The creator of the BioPAX document likely does not
have control over all external references.

Unification xrefs
Abundant use of unification xrefs, where possible, is highly recommended, especially in
physicalEntity instances. These xrefs allow a user to understand that two independent instances
from different BioPAX documents are actually the same entity (as long as they share one or
more unification xrefs).

When exporting data from a database with primary keys, those keys should generally be encoded
as unification xrefs. For example, if a database contains biochemical reactions with IDs for both
the reactions and the small molecules that participate in those reactions, unification xrefs
containing these IDs should appear in the corresponding BioPAX instances generated by the
database. In general, the original data record from which an instance was generated should be
pointed to via a unification xref. The exception to this rule occurs when the native class of the
data is not completely synonymous with the BioPAX class to which it is mapped. In these cases,
the resulting BioPAX instances should point back to the original data records via relationship
xrefs.

Caution: Complications with unification xrefs can arise when the database that is being pointed
to contains redundant information or contains more than one type of record. If a database
contains redundant information, such as GenBank or Chemical Abstracts Service (CAS), it is
possible to reference the same physical entity in the same database, but use IDs of different
redundant records. In this case, unification xrefs can not be guaranteed to be useful in
determining if two physical entities are the same across multiple BioPAX documents. Also, if a
database contains different types of records, such as mRNA and protein records in GenBank or
chemical structures with and without R groups in CAS, then it may be impossible to determine
the type of record referenced, which may lead to unification xrefs that point to molecules of a
different type than the referencing physical entity. Care in creating unification xrefs should be
taken when linking to these types of databases.

Publication xrefs
Publication xrefs should make use of PubMed IDs wherever possible. The DB slot of an xref to
an entry in PubMed should use the string “PubMed” and not “MEDLINE”.

Use of xrefs within specific classes
Taxonomy references in the TAXON-REF slot of the bioSource class should be stored as a
unification xrefs unless the species is not in an existing DB, in which case it should be stored as a
general ‘xref’ instance.

References to an external controlled vocabulary term within the OpenControlledVocabulary
class should use a unification xref where possible (e.g. GO:0005737)

Inside an xref
Within any xref, database names (in the DB slot) should be from a controlled vocabulary of
database names to avoid data integration problems that arise when different people use different
spellings of database names. The PSI-MI has a database name controlled vocabulary under
development. If this is not possible to use, be careful to use the database name exactly as spelled
on the database website (e.g. Use “Swiss-Prot” instead of swissprot, SWP or other frequent
spellings).

Database accession numbers that contain version information should keep the version
information with the accession number in the ID field e.g. “CAA61361.1”

Other recommendations
The COMMENT slot should be used instead of the OWL documentation elements
(rdfs:comment) for instances. The Documentation text entry box in Protégé (which writes
documentation as an rdfs:comment) should never be used for instances.

The AVAILABILITY should be a copyright statement, if necessary.

The DATA-SOURCE slot, present in all BioPAX entities, should be used to describe the source
of the data. This is meant to be used by databases that export their data to the BioPAX format or
by systems that are integrating data from multiple sources. The granularity of use (specifying the
data source in more or fewer places) is up to the user.

The NAME slot, present in all BioPAX entities, is a string that should be treated as case
insensitive. Names should be all lower case or capitalized, but not all UPPER CASE.

Best Practices: Metabolic Pathways

The main use of BioPAX level 1 is representation of metabolic pathways. These best practice
recommendations relate to this use and should be followed in addition to, not instead of, the
best practices listed above. It is possible to use BioPAX level 1 to represent other types of
pathway information, but this document does not address those uses. The BioPAX workgroup
will make note of how BioPAX level 1 is being used to help in the design of future levels.

PARTICIPANTS slot
The PARTICIPANTS slot of the interaction class (and subclasses) should be the union of
whatever is in the LEFT, RIGHT slots of conversions or the CONTROLLER, CONTROLLED
slots of control interactions. This slot is optional and is present mainly to enable representation of
general relationships in the interactions class.

LEFT and RIGHT slots
The direction in which a conversion proceeds (either from left-to-right or from right-to-left) is
specified by the catalyzing interaction (via the DIRECTION slot) or, in the case of spontaneous
conversions, by the SPONTANEOUS slot. Therefore, the substrates and products of a
conversion may be placed in either the LEFT or the RIGHT slots. However, in order to ease data
integration it is preferable that users adhere to the same conventions for the contents of these
slots. We therefore recommend the following, in order of precedence:

• If the conversion has an Enzyme Commission (EC) number or a Transport Commission
(TC) number, store the participants in the LEFT and RIGHT slots such that they mirror
the EC/TC reaction.

• For complex assemblies, store the subunits in the LEFT slot and the complex in the
RIGHT slot.

• For transports, store the outermost participants (relative to the interior of the cell or
organelle) in the LEFT slot and the innermost participants in the RIGHT slot.

• If none of the above are applicable, store the participants from left-to-right in the order
that the conversion occurs or is suspected to occur in the pathway.

Control
In general, the targets of control processes (i.e. occupants of the CONTROLLED slot) should be
interactions. Conceptually, interactions should be thought of as behaviors that physical entities
may exhibit and it is these behaviors, rather than the physical entities themselves, that should be
controlled or modified.

For example, a kinase activating a protein is a frequent event, especially in signaling pathways.
Instead of capturing this information as one physical entity activating (via an instance of the
control class) another, however, this information should be captured as the kinase catalyzing (via
an instance of the catalysis class) a reaction in which the protein is phosphorylated.

Catalysis
Generally, the enzyme catalyzing a conversion is known and the use of this class is obvious. In
the cases where a reaction is known to occur but the enzyme is not known, a catalysis instance
should be created without a controller specified (i.e. the CONTROLLER slot should remain
empty).

Conversion
The spontaneity of a conversion is expressed with the SPONTANEOUS slot. If the conversion is
not spontaneous, or if the spontaneity is not known, the SPONTANEOUS slot should be left
empty.

Pathway
A pathway is defined using interactions and pathwayStep instances. For most metabolic

pathways, the contents of the PATHWAY-COMPONENTS slot should be a set of pathwayStep
instances, one for each step of the pathway. In rare cases, such as if a pathway has not been
completely elucidated, the specific order in which some interactions occur in a pathway may not
be known. These interactions may be stored directly in the PATHWAY-COMPONENTS slot
without being wrapped inside pathwayStep instances. The PATHWAY-COMPONENTS slot
may also be left completely empty, in which case the pathway would simply have a name and
could be treated as a black box. This use is valid according to the BioPAX ontology, but in

general creating black-box pathways with the Level 1 BioPAX ontology is not encouraged as the
intent of Level 1 is to represent pathways with a high degree of detail.

Each pathwayStep instance should contain at most one conversion, typically one
catalysis, and any number of modulation instances. Exception to this rule are cases in which a
conversion is known to be catalyzed by multiple enzymes. In these cases, each separate catalysis
instance should be included in the pathwayStep (providing each occurs within the context of the
pathway).

A pathway step should not be listed in the NEXT-STEP slot of another pathwayStep if
the intersection of the entities in the participants slots of their interactions is empty. Typically, at
least one product of the conversion in each preceding pathwayStep should participate either as a
CONTROLLER or as a substrate to the conversion interaction of a pathwayStep.

5 HOW-TO

Creating a knowledge-base using BioPAX and Protégé

Protégé is an open-source ontology and knowledge-base editor from Stanford University. It can
be used to view and edit the BioPAX ontology and to create a database of instances of BioPAX
classes. The ezOWL plugin allows graphical viewing and editing of an ontology, but does not
graphically show instances.

To use BioPAX in Protégé, it is necessary to download three components:

1. Protégé from http://protege.stanford.edu/
Downloading the current stable release and not the beta release is recommended.

2. The Protégé OWL Plugin from http://protege.stanford.edu/plugins/owl/index.html
This allows Protégé to understand the OWL format.

3. The Protégé ezOWL Plugin from http://iweb.etri.re.kr/ezowl/
Used to view and edit an OWL ontology graphically.

Follow the instructions for installing these applications provided on their respective web pages.

After installing the above software, create a new OWL Files project in Protégé. To load the
BioPAX ontology, one may either: a) import the BioPAX OWL file from the web
(recommended), or b) load the ontology from a local copy of the BioPAX OWL file.

To import from the web:

1) On the Metadata tab (on the main screen next to the Individuals tab) click on the +
symbol near where it says "Namespace Prefixes". This will add a new namespace to the
project. The new namespace must be manually changed from
“http://www.domain2.com#” to “http://www.biopax.org/biopax-level1.owl#” and check
the "Imported" checkbox. The prefix should be changed from “p1” to “biopax”.

2) Save the project as an OWL file, then reload it (via the “Project Import…” menu item).
3) Upon reloading, the BioPAX ontology will be visible (grayed-out) in the classes menu.
4) Use the Individuals tab to create instances.
5) To use ezOWL, check the “ezOWLtab” checkbox in the dialog box that appears under

the “Project->Configure…” menu item. This allows viewing of the BioPAX ontology
structure in the normal Protégé tab and in the ezOWL tab.

Note: This method of importing BioPAX into Protégé prevents inadvertently made changes
to the imported BioPAX classes; changing the ontology is not recommended if the instance
data are meant to be shared.

To import from a local copy of the BioPAX OWL file:
1) Load the BioPAX OWL file via the “Project Import…” menu item. In the resulting

dialog box, select “OWL Files” and browse to the BioPAX OWL file on the local

computer disk drive by clicking on the + symbol next to “OWL file name” and press
“OK”. Protégé will load BioPAX.

2) Upon loading, the BioPAX ontology will be visible (not grayed-out) in the classes menu.
3) Use the Individuals tab to create instances.
4) To use ezOWL, check the “ezOWLtab” checkbox in the dialog box that appears under

the “Project->Configure…” menu item. This allows viewing of the BioPAX ontology
structure in the normal Protégé tab and in the ezOWL tab.

Note: This method of importing BioPAX into Protégé does not prevent inadvertently made
changes to the imported BioPAX classes; changing the ontology is not recommended if the
instance data are meant to be shared.

Protégé can be used as a full-fledged customizable database and data entry system, although it
requires programming effort. For example, Genome KnowledgeBase
(http://www.genomeknowledge.org) uses Protégé as its backend system. If used this way, it may
be desirable to modify the BioPAX ontology and create inverse slots for convenience. These
slots should be removed in shared data files in order to make them compliant with the BioPAX
standard.

Viewing Instances Graphically

RICE is a tool that can be used to graphically view the relationships between instances created
with Protégé (http://www.b1g-systems.com/ronald/rice/). It requires the use of RACER, an
inference engine (http://www.cs.concordia.ca/~haarslev/racer/). At the time of this writing, the
graph features of RICE functioned properly in a Linux environment but not in Windows; other
operating systems were not tested.

The RACER server must be active in order for RICE to interpret the BioPAX OWL ontology. To
start RICE, use the command "java -jar rice.jar". Use the “File” menu to open a BioPAX instance
file. Select the instance(s) to view and click the “ShowGraph” button. A pop-up graph should
appear showing the instance(s) and the relationships to other instances (see Figure 1).

6 Use Case Outlines

These use-cases were taken into account during the design of BioPAX. Other use-cases may be
suggested via the biopax-discuss@biopax.org mailing list.

Data Sharing Between Databases
One of the primary intended functions of the BioPAX format is to facilitate data exchange
between existing biological pathway databases. In order for this to happen, databases must
develop the ability to write-to and read-from the BioPAX format. Typically, this will require the
creation of in-house software. While a number of freely available software packages may help
make this task easier (e.g. Jena, an open source Java API for RDF; see
http://jena.sourceforge.net/index.html), development of data translation software may
nonetheless require a fair amount of programming time for each individual database.

The typical data transaction, i.e. passing a set of data from one database to another, will consist
of a number of steps. These steps will vary depending on the particular situation, but in general
they should consist of the following:

1) Convert a set of data into the BioPAX format. This step involves mapping the native data
model to the BioPAX data model (i.e. the BioPAX ontology) and then creating a BioPAX
OWL file that contains instances of the mapped classes. This step will almost always
require developing software to perform the mapping.

2) Transfer the BioPAX file. There are many mechanisms by which this could be
accomplished, e.g. the data provider could make the file available for download from an
ftp or http server.

3) Convert the BioPAX file into the native format of the receiving database (the reverse of
step 1). Again, this will likely require new software to perform the data conversion.

4) Merge data sets and remove redundancies. Often, many instances in a BioPAX file may
already exist in the target database (Note: these are only detectable if the redundant
instances share one or more unification x-refs). These instances should be merged with
the existing data (if they contain additional information not present in the database) or
removed from the data set being imported (if not) to prevent redundant entries from being
created. Also, any pointers to such instances must be redirected to the existing database
objects.

As more datasets become available in the BioPAX format, software utilities will be developed
(by the BioPAX group and others) to ease data sharing. For example, a utility to integrate the
data from two different BioPAX files would be useful. With such a utility, users could integrate
new BioPAX data with their own by first outputting their data into BioPAX format, then running
the utility to combine it with the new data, then translating the combined data set back into their
own format. Thus, the need for system-specific data integration software (step 4 above) would be
reduced.

BioPAX as a knowledge-base (KB) Model
The BioPAX ontology is readily usable as the data model for a pathway knowledge-base (KB)
using a tool like Protégé (http://protege.stanford.edu). Building a new KB with the BioPAX
ontology would save time and resources since it would eliminate the need to create a data
schema from scratch and it would reduce the translation requirement for exporting and importing
data to/from the BioPAX format (some custom semantic mapping and ID mapping might still be
required to import data from another database).

Of course, some users may wish to extend the BioPAX ontology to suit their own needs. For
example, many KBs use “inverse slots” – slots that are the reciprocal of other relationship slots –
in order to speed up queries and facilitate browsing. Since such slots provide redundant
information, they were left out of the BioPAX ontology. See the HOW-TO section for more
information on creating a BioPAX KB.

Pathway Data Warehouse
The initial motivation for creating the BioPAX standard was that it was seen as a logical first
step toward creating a central public repository for biological pathway data, a resource strongly
desired by many members of the pathway community. If many databases provide access to their
data in the BioPAX format, it should be relatively simple to aggregate this data in a central
repository. With the completion of BioPAX level 1, many members of the BioPAX Group will
resume work toward creating this resource.

Pathway Analysis Software
Another intended function of BioPAX is to speed development time of software that makes use
of pathway data. Currently, in order for pathway software to access pathway data from multiple
sources it must either be programmed to understand each different format, or the data from each
source must be translated into a format that the software understands. This can require significant
development time and as a consequence most pathway software is run on only a few datasets,
limiting its utility.

The presence of a standard format for pathway data should alleviate this problem. With the lower
barrier to data access, pathway software will be much easier to develop and apply. Also,
additional software that might not be practical without an agreed upon standard, e.g. a
sophisticated pathway visualization tool, may be more likely to be developed if BioPAX
becomes widely adopted.

Pathway Analysis Software Example: Molecular profiling analysis
Genomics and proteomics technologies, such as gene expression microarrays and mass
spectrometers, are being used to generate large datasets of molecules present at a specific place
and time in an organism (molecular profiling), among other types of data. Molecular profiling
experiments are often compared across two or more conditions (e.g. normal tissue and cancerous
tissue). The result of this comparison is often a large list of genes that are differentially present in

the tissue of interest. It is interesting and useful to analyze these lists of genes in the context of
pathways. For instance, one could look for pathways that are statistically over-represented in the
list of differentially expressed genes. The result is a list of pathways that are active or inactive in
the condition of interest compared to a control. The list of pathways is often much shorter than
the list of input genes, thus is easier to comprehend. BioPAX documents describing pathways
could be supported by tools that perform pathway-based analysis.

Visualizing Pathway Diagrams
Pathway diagrams are useful for examining pathway data. A number of formats are available for
these images, but only few available viewing tools link components in the image to underlying
data. A mapping of BioPAX to a symbol library for pathway diagrams (such as Kohn maps -
http://discover.nci.nih.gov/kohnk/symbols.html) could be the basis for a general BioPAX
pathway diagram tool.

Pathway Modeling
Mathematical modeling to understand the dynamics of a pathway system is a frequent use of
pathway information. Qualitative modeling requires information about components in the
pathway and their connections, as well as some qualitative knowledge of rates (e.g. fast, slow)
and concentrations of the components (e.g. high, medium, low). Quantitative modeling
additionally requires such things as measured rate constants, stoichiometry and initial
concentrations in order to quantitatively predict pathway behavior. Many tools are available for
this type of modeling, and the SBML (http://sbml.org) and CellML (http://www.cellml.org)
standards are available to describe the models, which many tools support. While BioPAX does
not contain enough information to describe a pathway model as well as SBML and CellML,
there are two envisioned use cases:

Using BioPAX as metadata for SBML and CellML
SBML and CellML, as model representation languages, focus on representing the structure,
parameters and mathematical description of a pathway model. BioPAX focuses on molecule and
interaction classification schemes and database cross-referencing for pathway components.
BioPAX and SBML or CellML could be linked together when a user wants both a full model
description and information about types of pathway components and database links. A hybrid
XML document containing BioPAX and SBML or CellML elements that are tied together using
the CellML metadata standards could be created that fills this need.

Pathway analysis using logical inference
One advantage of representing BioPAX pathway data in OWL format is the availability of
logical inferencing tools that support OWL. These tools are useful for analyzing pathways. For
example, given a metabolic network model for an organism in BioPAX format, a known minimal
nutrient media for that organism and the set of compounds essential for growth under one set of
living conditions, then a transitive closure computation of the minimal nutrient set can be used to

verify if the metabolic network model of the organism is sufficient to explain growth. If any
essential compound is not reachable through the network from the minimal nutrient list, then the
network model is incomplete.

7 Glossary

Some of the following definitions may only relate to BioPAX, thus may not be general.

Biological pathway: A working definition of a pathway is a series of molecular interactions and
reactions (or other biological relationships), often forming a network. For molecular pathways,
the start and end points are often defined by observation of a detectable phenotype after
stimulation or perturbation, such as observing gene expression after stimulating the cell with a
peptide growth hormone.

Class: Used in knowledge representation to represent a category of things. A specific member of
a class is called an instance.

Data exchange format: Any data format, usually electronic, used to exchange data.

GKB Editor: Generic Knowledge Base Editor. A software tool to build an ontology and manage
instances of classes defined in that ontology. http://www.ai.sri.com/~gkb/

Instance: An instance or particular member of a class. Known as ‘individual’ in OWL.

Ontology: A system for describing knowledge, a conceptualization of a domain of interest
usually made up of any or all of the following: concepts (classes), relations, attributes,
constraints, objects, values. http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

OWL: Web ontology language, a proposed W3C standard, is an extension of RDF to support
ontologies. It provides semantics for classes and subclasses, instances, and relationships.
http://www.w3.org/TR/owl-features/

Protégé: Protégé ontology and knowledge base editor. A software tool to build an ontology and
manage instances of classes defined in that ontology. http://protege.stanford.edu/

RDF: Resource Description Framework, a proposed W3C standard, allows description of basic
relationships between objects (subject-predicate-object semantics). http://www.w3.org/TR/rdf-
primer/

Slot: A ‘field’ or ‘member’ of a data structure. Known as a ‘property’ in OWL.

Appendix A: Design Principles

Flexible: Biological pathway data are organized and represented in various ways depending on
the type of data and its intended use. BioPAX must support the most frequently used
representations to be widely accepted. Of course, there is a trade-off that must be considered:
increased flexibility may increase data integration overhead. For example, the issue of semantic
mapping between different representation styles must be dealt with when users wish to integrate
BioPAX data sets that use different representations. Therefore, BioPAX should strike a
reasonable balance between flexibility and rigidity by allowing multiple preferred
representations and providing best practice recommendations to encourage consistent data
representation.

Extensible: Biological pathway data are available in various forms and at varied levels of detail.
BioPAX aims to initially support the most frequently used types of pathway data and levels of
detail and to progressively broaden support for additional pathway data types and finer detail
through a leveled approach. The class structure of BioPAX was designed to be extensible for this
reason. Many parts of the BioPAX ontology, such as internal controlled vocabularies and many
of the intermediate level classes, will be extended in future BioPAX levels. All efforts will be
made to keep future levels backwards compatible.

Encapsulation: Pathway data depends on many primary databases of physical entities (e.g.
proteins, small molecules, etc.). Many pathway data sets reference physical entities using
database identifiers. Because of the varied nature of the physical entity databases, resolving these
identifiers in a general way can be difficult, especially for the naïve user. Frequently used data
about the physical entities (e.g. sequence for proteins, structure for small molecules) is optionally
present (encapsulated) in the BioPAX format for convenience.

Compatible: BioPAX uses existing standards for encoding biological pathway information to
avoid “re-inventing the wheel”. Specifically, pointers to the Gene Ontology (GO), and instances
of Chemical Markup Language (CML) and the SMILES format are used in various slots in the
ontology. Also, compatibility with other pathway standards, such as SBML, CellML, and PSI-
MI has influenced the design of many BioPAX features.

Computable: BioPAX stores data in a format that supports many different types of
computational analysis. Values are strongly typed and the class structure is clearly defined. A
wide range of computational tasks, from simple reading and parsing of a BioPAX file to logical
inference based on the data, are supported. The OWL version of the BioPAX ontology complies
with the OWL-DL sublanguage and is thus interpretable by description logic software such as
RACER (http://www.sts.tu-harburg.de/~r.f.moeller/racer/) and should be compatible with future
software built to work with the Semantic Web.

Appendix B: Level and Version Numbers

BioPAX level numbers indicate the relative scope of the ontology. BioPAX Level 1 focuses on
metabolic pathway data; subsequent levels will expand this scope to include other types of data
such as molecular binding interactions and signal transduction pathways. BioPAX level
numbers are always whole numbers (e.g. Level 1, version 1.0).

In addition to the level numbers, BioPAX version numbers indicate the relative stage of
development of each level. Version numbers are a composite of two or three individual integers:
the major version number, the minor version number, and, optionally on beta versions, a revision
number. All three numbers are separated by decimal points to form the composite version
number (e.g. Level 1, version 1.1.1). The major version number appears before the first decimal
point and is only incremented when an update is likely to affect existing data. Releases in which
the major version is 0 are early draft releases of their respective levels (e.g. Level 1, version 0.5).

The minor version appears after the first decimal point and is incremented when an update is
unlikely to affect data that conforms to the prior version. Odd minor version numbers indicate
beta versions, while even minor version numbers indicate release versions.

The revision number is optional and may only appear on beta versions (i.e. where the minor
version is an odd number). It appears after the second decimal point and is incremented with
each new revision of the beta version.

For example, the first non-draft release of every level is version 1.0 (major version 1, minor
version 0). If this version would need to be updated, the first beta version of the update would be
called version 1.1. Subsequent revisions of this beta version would be called versions 1.1.1,
1.1.2, 1.1.3, etc. When no further revisions were needed, a release version of the update would
be created called version 1.2 if the revisions would not affect data that complied with version
1.0, or version 2.0 if they would.

All versions of BioPAX are available in the following directory on the BioPAX website:
http://www.biopax.org/Downloads/

The most recent major versions of each level of BioPAX are always available in this directory:
http://www.biopax.org/release/

Acknowledgements
The BioPAX workgroup thanks members of the community who have contributed to this work
through discussions: Melissa Cline, Autumn Cuellar, Emek Demir and the PATIKA group,
Andrew Finney, Ken Fukuda, Matt Halstead, Mike Hucka, Stan Letovsky, Peter Murray-Rust,
the PSI-MI workgroup and others who have contributed through involvement in the biopax-
discuss list, seminar participation and birds of a feather (BOF) sessions at conferences.

References
1. Baxevanis, A. D. & Ouellette, B. F. F. Bioinformatics : a practical guide to the analysis

of genes and proteins (Wiley-Interscience, New York, 2001).
2. Alberts, B. Molecular biology of the cell (Garland Science, New York, 2002).
3. Stein, L. Creating a bioinformatics nation. 417, 119-120 (2002).
4. Hermjakob, H. et al. The HUPO PSI's molecular interaction format--a community

standard for the representation of protein interaction data. Nat Biotechnol 22, 177-83
(2004).

5. Karp, P. D. et al. The EcoCyc Database. Nucleic Acids Res. 30, 56-58 (2002).
6. Krieger, C. J. et al. MetaCyc: a multiorganism database of metabolic pathways and

enzymes. Nucleic Acids Res 32 Database issue, D438-42 (2004).
7. Bader, G. D., Betel, D. & Hogue, C. W. BIND: the Biomolecular Interaction Network

Database. Nucleic Acids Res. 31, 248-250 (2003).
8. Overbeek, R. et al. WIT: integrated system for high-throughput genome sequence

analysis and metabolic reconstruction. 28, 123-125 (2000).
9. Demir, E. et al. PATIKA: an integrated visual environment for collaborative construction

and analysis of cellular pathways. 18, 996-1003 (2002).
10. Lemer, C. et al. The aMAZE LightBench: a web interface to a relational database of

cellular processes. Nucleic Acids Res 32 Database issue, D443-8 (2004).
11. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource

for deciphering the genome. Nucleic Acids Res 32 Database issue, D277-80 (2004).
12. Hucka, M. et al. The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics 19, 524-31
(2003).

13. The_Gene_Ontology_Consortium. Gene ontology: tool for the unification of biology. 25,
25-29 (2000).

14. Murray-Rust, P. & Rzepa, H. S. Chemical markup, XML, and the World Wide Web. 4.
CML schema. J Chem Inf Comput Sci 43, 757-72 (2003).

15. Weininger, D. SMILES, a Chemical Language and Information System. 28, 31-36
(1988).

16. Karp, P. D. Database links are a foundation for interoperability. Trends Biotechnol 14,
273-9 (1996).

17. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology.
Nucleic Acids Res. 31, 28-33 (2003).

